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Abstract— The usefulness of any dynamic model depends on the accuracy and reliability of its outputs, because a precise input data are 

rarely available. So, to optimize a large kinetics dynamic model becomes complicated, because it requires the sensitivity analysis to reduce 

the numbers of kinetics. Moreover; the rapid development and application of sensitivity analysis techniques have a great impact on a 

kinetic parameter metabolic network model of E. coli. For that, we apply one-at-a-time sensitivity measures for large-scale kinetic 

parameters which contain more than 100 kinetics and the model output are 53 metabolites and fluxes represent five pathways with acetate 

formation and PTS system and quantify our result by using the Mean for each kinetics. The formal analysis shows that, there are seven 

kinetic parameters affected on the model output. 
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1 INTRODUCTION                                                                     

One of the very major challenges to metabolic network 
model of E. coli formulated by Kadir [3] it contains a large-
scale kinetic parameters. The kinetics which involve in en-
zyme pathways are usually subject to multiple changes of 
regulation, and the kinetic changes regulation plays an im-
portant role in metabolic regulation [6] [7]. However, some of 
these kinetic parameters are affected in the model output, 
making it necessary to find a way to understand and study 
this kinetics. In fact, the number of kinetics is very large for an 
optimization algorithm task, which requires sensitivity analy-
sis to reduce the number of kinetics. On the other hand, the 
sensitivity analysis calculated the rate of change in the output 
variables of a system which result from small perturbation in 
the input parameter [4]. However, kinetic modeling demands 
a large number of parameters including kinetic constants and 
initial metabolites as well as enzyme concentration [2]. For 
that, many authors have been working on the sensitivity anal-
ysis for large-scale kinetic parameters; Chassagnole investigat-
ed the model of glycolysis and pentose phosphate pathways 
which contain 85 kinetic parameters by applying a Stepwise 
Internalization method for the sensitivity analysis through 
analytical function to fit the time course of unbalanced metab-
olite concentrations [1]. Twelve kinetic parameters were iden-
tified as the most effective parameters for Embden-Meyerhof 
and pentose phosphate pathways with phosphortransferase 
system using Monte Carlo simulation and Sobol method to 
calculate the times profile’s for identifying the sensitivity for 
each parameter [5]. They apply the sensitivity analysis to 100 
kinetics by scaling each kinetic parameter individually one by 

one from 1% to 100% of the kinetic parameters concentration; 
the kinetic targeting is   where seven kinetic parameters 
was stated as the most significant from [1] for the metabolic 
network of phosphotransferase system, glycolysis and pentose 
phosphate pathways [2]. Also, another researcher used differ-
ent sensitivity analysis methods for different tasks like mass 
and energy balance for developing a steady-state kinetic mod-
el [11]. To this, all the authors applyied different methods to 
their on models and the number of kinetic parameters are less 
than the model formulated by Kadir [3]. 

In this study, therefor the model as stated in [3] are used, 
which consists of Glycolysis, Pentose Phosphate, TCA cycle, 
Gluconeogenesis, Glycoxylate pathways, phosphotransferase 
system and Acetate formation. The one-at-a-time sensitivity 
measures in large-scale kinetic parameters, was used to identi-
fy the most effective parameters that gave the most significant 
changes on the model output metabolites and fluxes which the 
target is all the kinetics, it was been found that, seven kinetic 
parameters are affected highly in the model output. 

2 METHOD 

2.1 Metabolic Structure 

In the present study, we consider the main metabolic path-
way of E. coli formulated by Kadir [3] as a benchmark. This 
model describes dynamic metabolic behavior of Glycolysis, 
Pentose Phosphate, TCA cycle, Gluconeogenesis, Glycoxylate 
pathways and Acetate formation containing 24 metabolites 
and 29 enzymatic reactions with 10 co-factors (e.g., nad, coa, 
atp). The corresponding metabolic network is shown in Figure 
1. 

The metabolite concentration rate of the changes in this 
metabolic network is given by the following equation: 
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Where,  is the concentration of metabolite   ,  is stoichio-
metric coefficient of metabolite  in the reaction   ,  is the 
rate of the reaction  and  is the growth rate on the dilution 
effect. All the formulas and the mass balance in this dynamic 
model are taken from [3]. 

2.2 Sensitivity Analysis 

Numerous kinetic parameters of dynamic modeling from 
different laboratories in different conditions may require to 
fitting closely the model result to experimental data if used for  

 
Figure. 2. Sensitivity analysis algorithm 

 
the optimization algorithms purpose, which needs the sensi-
tivity analysis to reduce the kinetic numbers [4]. Thus, the 
Sensitivity analysis concern on mathematical equations to rep-
resent a model system; which assesses the sensitivity of the 
model results in variation of model input given by variables or 
parameters and variation assumption [10]. Sensitivity analysis 
can be represented by different mathematical prospective 
which give access to different numerical methods, this method 
is divided into local and global methods; the local methods 
consider the small changes in the model inputs whereas the  
global methods consider input values as random variables [8]. 
For that, we apply the local sensitivity analysis of large-scale 
dynamic metabolic network of E. coli [3] using the method of 
one-at-a-time sensitivity measures [9] under the continuous cul-
ture at the steady state condition, by scaling all the kinetics of 

 one by one into percentage increasing 10%, 20% 
and 40% with dilution rate 0.1. All the tests were applied in 
these enzymes pts, pgi, pfk, aldo, gapdh, pyk, pdh pta, acs, ack, cs, 
icdh, 2kgdh, sdh, fum, mdh, icl, ms, ppc, pck, mez, g6pdh, 6pgdh, 
rpe, rpi, tkta, tktb and tal. In Figure 2, shows the sensitivity 
analysis algorithm, that used in order to achieve our target, 
this began by increasing each kinetics into their allowable 
range at a steady state point, and then calculate the variance 
between the original model output and the simulation model, 
after which the changes were figure out using the Mean for 

 

Figure. 1. Metabolic network structure. 

 

From kinetic inputs 
 Do 

For perturbation choose randomly one 
point at steady state for all kinetics;  
Increase the kinetics into their percentage; 
Account the variance between the simula-
tion result and the original result at that 
point; 

 
Account the Percentage Changes for each 
kinetic often apply the increasing in each 
kinetics using the Mean equation below 

where  is the mod-
el output and  the total number of the 
model output; 

 End  
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each kinetics.  

3  RESULT 

Twenty nine algebraic equations for kinetic expression 
and co-metabolites concentration and twenty nine differential 
equations, was targeted to perform sensitivity analysis on the 
large-scale dynamic metabolic network under steady-state 
condition of E. coli by increasing each kinetic parameters in 
10%, 20% and 40% from 40% we found that seven kinetic pa-
rameters are affected in the model output, which the kinetic is 
V_PYKmax, n_PK, ICDH, Kf_ICDH, Kd_ICDHnadp, 
Km_ICDHnadp and V_ICLmax represent the reaction rate of 

,  and  With a concentration of the metabolite 
which are substrates and products of that reaction rate , 

, , , , and . Match more, the changes 
caused by four kinetic parameters in the reaction rate of  
are important due to the changes in ICIT and 2KG during exe-
cution time. 

More than 180 kinetics have been investigated, by consider-
ing the highest Mean of percentage for all kinetics will be de-
scribed with percentages result in table 1.  The deviations in 

V_PYKmax result shown that, the metabolites of FDP and ICIT 
are highly increased and ACE is highly degreased and the en-
zyme of ALDO is highly increased due to highly decreasing in 
GLcex, which in turn is regulated by its effectors ATP, ADP 
and PEP. The deviations in n_PK shows that, the metabolites 
of FDP, GAPDHAP, PEP, ICIT and E4P are highly increased 
and ACP, ACE and S7P highly degreased; the enzymes of  Al-
do are highly increased and the, Ack and Pck  are highly de-
creased due to highly decreasing in GLCex which in turn is 
regulated by the same V_PYKmax effectors. The deviations in 
ICDH, Kf_ICDH and Kd_ICDHnadp results has shown that, 
highly increasing in metabolite of ICIT and deviation in 
Km_ICDHnadp result cause highly decreasing in ICIT also; 
which in turn is regulated by its effectors NADP, NADPH and 
2KG. Moreover, the kinetics of ICDH and Kf_ICDH have the 
same results may be due to highly increase in ICIT metabo-
lites. The deviation in V_ICLmax result shows that, the metab-
olites of SUC and GOX are decreased, which in turn is regu-
lated by its effector ICIT. Table 1, show the percentage chang-
es. 

TABLE 1 
PERCENTAGE CHANGES WITH 40% 

 

Metabolites and 

Fluxes 

Original 

values 

V_PYKm

ax 

n_PK ICDH Kf_ICD

H 

Kd_ICD

Hnadp 

Km_ICD

Hnadp 

V_ICLmax 

Cell Con 1.5783 -11.98% -27.87% -3% -3.00% -4.59% 4.12% 3.99% 

GLCex 0.022105 -45.95% -263.06% -10.98% -10.98% -17.82% 9.51% 12.16% 

G6P 0.20345 12.24% 25.45% 3.35% 3.35% 5.05% -4.92% -4.77% 

F6P 0.21311 9.99% 21.27% 2.71% 2.71% 4.09% -3.89% -3.81% 

FDP 1.4621 60.42% 90.18% 13.44% 13.44% 20.09% -17.84% -20.37% 

GAPDHAP 0.31094 34.37% 75.73% 4.63% 4.63% 7.28% -4.3% -5.76% 

PEP 1.4914 33.71% 75.80% 3.9% 3.9% 6.21% -2.92% -4.67% 

PYR 2.8117 -4.42% 9.74% -8.92 -8.92 -13.96 10.19% 10.96% 

AcCOA 1.0018 -0.43% 5.77% -6.69% -6.69 -10.46% 7.81% 8.26% 

ICIT 0.21101 63.16% 90.59% 87.88% 87.88% 93.11% -1155.72% -3.95% 

2KG 5.3724 9.47% 36.54% 8.99% 8.99% 15.77% 28.99% -14.74% 

SUC 0.57217 -4.57% -4.87% 15.68% 15.68% 22.94% -18.63% -28.49% 

FUM 0.35609 -2.74% -2.16% 11.69% 11.69% 17.53% -11.9% -18.69% 

MAL 0.14263 -0.27% 4.25% 11.94% 11.94% 18.37% -8.07% -17.49% 

OAA 0.029637 8.35% 29.87% 11.99% 11.99% 18.98% 5.55% -18.53% 

GOX 0.34577 -7.06% -11.61% 23.07% 23.07% 34.97% -27.13% -33.55% 

AcP 2.0199 -30.76% -127.28% -10.24% -10.24% -16.42% 9.72% 11.6% 

ACE 0.000209 -55.5% -408.78% -12.96% -12.96% -21.18% 11.07% 14.04% 

6PG 0.017832 -0.17% -0.87% -1.41% -1.41% -2.22% 0.73% 1.84% 

Ru5P 0.02134 4.38% 8.52% 0.33% 0.33% 0.47% -0.79% -0.5% 

R5P 0.07617 4.75% 9.36% 0.46% 0.46% 0.68% -0.92% -0.69% 

Xu5P 0.026436 5.11% 9.98% 0.57% 0.57% 0.84% -1.02% -0.82% 

S7P 0.004747 -28.5% -185.29% -2.3% -2.3% -3.89% 0.68% 2.13% 

E4P 0.027433 33.67% 70.4% 5.88% 5.88% 9.07% -6.41% -7.8% 

Miu 0.099617 -0.16% -0.33% -0.1% -0.1% -0.16% -0.07% 0.1% 

Pts 1.4003 10.93% 22.93% 2.99% 2.99% 4.48% -4.36% -4.22% 

Pgi 1.3 11.58% 24.35% 3.23% 3.23% 4.87% -4.65% -4.57% 

Pfk 1.3402 11.18% 23.54% 3.08% 3.08% 4.64% -4.47% -4.36% 

Aldo 0.52536 80.38% 141.15% 14.52% 14.52% 22.49% -17.7% -18.48% 
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5 CONCLUSION  

In this paper, a large-scale kinetic model investigated 
through by one-at-a-time sensitivity measures. 185 kinetic pa-
rameters that represent all the kinetics model which seven 
kinetics are the most effective on the model output and all the 
kinetics increased individually in 10%, 20% and 40% where in 
40% shown good effect often apply the Mean percentage to all 
the kinetics which explained in the result part, the metabolite 
of ICIT is very important because ICIT is substrate and the 
reaction is inhibited by NADP/NADPH for ICDH equation 
rate; since the first six kinetics cause highly decreasing or in-
creasing on ICIT. The results shown that, the local sensitivity 
analysis can be applied. 

6 FUTURE WORK 

We use local sensitivity analysis method for large-scale ki-
netic parameters. This problem appears highly under-
conditional at first. However, we have shown that by applying 
one-at-a-time sensitivity measures. Sensible results can none-
theless be obtained; such an approach may prove in other ki-
netic parameters. 

Most of our efforts have focused on how to apply the sensi-
tivity analysis technique in large kinetic parameters. The result  

 
 

of one-at-a-time sensitivity measures showed a good result in 
terms of sensitivity analysis, principal, but had a lack in 
searching all the kinetic simultaneously. We suspect that, 
these methods can be blamed as long as there are many local 
methods can be applied. We believe that, there are significant 
methods for a complex biological model by applying global 
sensitivity analysis technique to large-scale kinetic parameters. 
 
NOMENCLATURE 

 
METABOLITES 

 
GLCex glucose; G6P: Glucose-6-phosphate; F6P: Fructose-

6-phosphate; FDP: Fructose 1,6-bisphosphate, GAP: Glycer-
aldehyde 3-phosphate; DHAP: Dihydroxyacetone phosphate; 
PEP: Phosphoenolpyruvate, PYR: Pyruvate; AcCOA: Acetyl-
CoA; AcP: Acetylphosphate; ACE: Acetate; ICIT: Isocitrate; 
2KG: 2-Keto-Dgluconate; SUC: Succinate; FUM: Fumarate; 
MAL: Malate; OAA: Oxaloacetate; 6PG: 6-
Phosphogluconolactone; Ru5P: Ribose 5-phosphate; Xu5P: 
Xylulose 5-phosphate; R5P: Ribulose 5-phosphate; S7P: 
Sedoheptulose 7-phosphate; E4P: Erythrose 4-phosphate. 
 
ENZYMES 

 

PERCENTAGE CHANGES WITH 40% 

 

Metabolites 

and Fluxes 

Original 

values 

V_PYKm

ax 

n_PK ICDH Kf_ICD

H 

Kd_ICD

Hnadp 

Km_ICD

Hnadp 

V_ICLmax 

Pyk 0.62509 -28.6% -56.26% 0.7% 0.7% 1.13% -0.49% -0.78% 

Pdh. 1.766 -0.7% -3.15% 4.16% 4.16% 6.39% -5.27% -5.52% 

Cs 1.4682 3.47% 13.52% 6.91% 6.91% 10.72% -8.20% -8.85% 

ICDH 0.93296 7.42% 25.01% -2.01% -2.01% -2.1% 24.63% 0.53% 

2KGDH 0.40201 5.4% 10.6% -16.47% -16.47% -25.65% 19.16% 20.34% 

Icl 0.51436 -6.1% -10.45% 19.79% 19.79% 30.64% -21.98% -26.05% 

Ms 0.47975 -6.05% -10.37% 19.55% 19.55% 30.32% -21.62% -25.51% 

SDH 0.85922 -0.83% -0.96% 3.09% 3.09% 4.81% -2.95% -4.17% 

Fum 0.8237 -0.74% -0.91% 2.72% 2.72% 4.26% -2.57% -3.54% 

MDH 1.2698 -2.76% -4.6% 8.88% 8.88% 13.8% -9.66% -11.55% 

Pita 0.2504 -35.12% -161.62% -10.85% -10.85% -17.51% 9.97% 12.29% 

Ask 0.052391 -48.51% -278.56% -11.74% -11.74% -19.05% 10.23% 13% 

Aces 0.15652 -48.54% -278.48% -11.74% -11.74% -19.06% 10.24% 13.01% 

Pck 0.068774 -35.45% -157.26% 8.55% 8.55% 13.82% 8.11% -13.41% 

Ppc 0.2702 22.89% 55.39% -1.88% -1.88% -2.83% 2.96% 2.63% 

Mez 0.019458 -0.2% 3.1% 8.91% 8.91% 13.97% -5.7% -12.04% 

G6pgdh 0.079927 -0.15% -0.74% -1.2% -1.2% -1.88% 0.62% 1.58% 

6pgdh 0.078143 -0.14% -0.74% -1.19% -1.19% -1.87% 0.62% 1.57% 

Rpe 0.04516 -1.3% -2.71% -1.52% -1.52% -2.38% 0.95% 2.01% 

Rpi 0.030597 1.26% 1.56% -0.81% -0.81% -1.28% 0.23% 1.05% 

Tkta 0.022996 0.14% -0.97% -1.2% -1.2% -1.89% 0.63% 1.6% 

TktB 0.019783 -3.81% -6.41% -2.15% -2.15% -3.33% 1.65% 2.88% 

TaL 0.022522 0.74% 2.92% -1.18% -1.18% -1.85% 0.63% 1.59% 

Mean  - 16.06% 54.87% 8.22% 8.22% 11.99% 8.85% 29.36% 
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Pts: Phosphotransferase system; Pgi: Phosphoglucose iso-
merase / Glucosephosphate isomerase; Pfk: Phosphofructoki-
nase-1; Aldo: Aldolase; GAPDH: Glyceraldehyde 3-phosphate 
dehydrogenase; Pyk: Pyruvate kinase; Pdh: Pyruvate dehy-
drogenase; Acs: Acetylcoenzyme A synthetase; Pta: Phos-
photransacetylase; Ack: Acetate kinase; cs: Citrate synthase; 
ICDH: Isocitrate dehydrogenase; 2KGDH: 2-Keto-D-gluconate 
Dehydrogenase; SDH: Succinate dehydrogenase; Fum: 
Fumarase; MDH: Malate dehydrogenase; Mez: Malic enzyme; 
Pck: Phosphoenolpyruvate carboxykinase; Ppc: PEP carbox-
ylase; ICL: Isocitrate lyase; Ms: Malate synthase; G6pdh: Glu-
cose-6-phosphate dehydrogenase; 6Pgdh: 6Phsophogluconate 
dehydrogenase; Rpi: Ribulose 5phosphate 3-isomerase; Rpe: 
Ribulose phosphate 3epimerase; Tkta: TransketolaseI; Tktb: 
TransketolaseII; Tal: Transaldolase.     
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